Hanani triple packings and optimal q-ary codes of constant weight three
نویسندگان
چکیده
The exact sizes of optimal q-ary codes of length n, constant weightw and distance d = 2w− 1 have only been determined for q ∈ {2, 3}, and for w|(q − 1)n and n sufficiently large. We completely determine the exact size of optimal q-ary codes of constant weight three and minimum distance five for all q by establishing a connection with Hanani triple packings, and settling their existence.
منابع مشابه
The Sizes of Optimal q-Ary Codes of Weight Three and Distance Four: A Complete Solution
This paper introduces two new constructive techniques to complete the determination of the sizes of optimal q-ary codes of constant weight three and distance four.
متن کاملOptimal (v, 3, 1) binary cyclically permutable constant weight codes with small v
We classify up to multiplier equivalence optimal (v, 3, 1) binary cyclically permutable constant weight (CPCW) codes with v ≤ 61. There is a one-to-one correspondence between optimal (v, 3, 1) CPCW codes, optimal cyclic binary constant weight codes with weight 3 and minimal distance 4, (v, 3; b(v − 1)/6c) difference packings, and optimal (v, 3, 1) optical orthogonal codes. Therefore the classif...
متن کاملNew inequalities for $$q$$ q -ary constant-weight codes
Using double counting, we prove Delsarte inequalities for qary codes and their improvements. Applying the same technique to q-ary constant-weight codes, we obtain new inequalities for q-ary constantweight codes.
متن کاملNew explicit binary constant weight codes from Reed-Solomon codes
Binary constant weight codes have important applications and have been studied for many years. Optimal or near-optimal binary constant weight codes of small lengths have been determined. In this paper we propose a new construction of explicit binary constant weight codes from q-ary ReedSolomon codes. Some of our binary constant weight codes are optimal or new. In particular new binary constant ...
متن کاملOn non-full-rank perfect codes over finite fields
The paper deals with the perfect 1-error correcting codes over a finite field with q elements (briefly q-ary 1-perfect codes). We show that the orthogonal code to the q-ary non-full-rank 1-perfect code of length n = (q − 1)/(q − 1) is a q-ary constant-weight code with Hamming weight equals to qm−1 where m is any natural number not less than two. We derive necessary and sufficient conditions for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 75 شماره
صفحات -
تاریخ انتشار 2015